欢迎访问赤峰市教育局!

素材资料

  您当前的位置是:  首页 > 教学资源 > 素材资料

初一数学上册知识点:整式的加减

【字体: 】【收藏】 【打印】【关闭
  整式的加减!
  一、目标与要求
  1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
  2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
  3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
  4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
  二、重点
  单项式及其相关的概念;
  多项式及其相关的概念;
  去括号法则,准确应用法则将整式化简。
  三、难点
  区别单项式的系数和次数;
  区别多项式的次数和单项式的次数;
  括号前面是“-”号去括号时,括号内各项变号容易产生错误。
  四、知识框架
  五、知识点、概念总结
  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
  2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
  3.多项式:几个单项式的和叫多项式。
  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
  5.常数项:不含字母的项叫做常数项。
  6.多项式的排列
  (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
  (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
  7.多项式的排列时注意:
  (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
  (2)有两个或两个以上字母的多项式,排列时,要注意:
  a.先确认按照哪个字母的指数来排列。
  b.确定按这个字母向里排列,还是向外排列。
  (3)整式:
  单项式和多项式统称为整式。
  8. 多项式的加法:
  多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
  9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
  10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
  11.掌握同类项的概念时注意:
  (1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
  ①所含字母相同。
  ②相同字母的次数也相同。
  (2)同类项与系数无关,与字母排列的顺序也无关。
  (3)所有常数项都是同类项。
  12.合并同类项步骤:
  (1)准确的找出同类项;
  (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
  (3)写出合并后的结果。
  13.在掌握合并同类项时注意:
  (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
  (2)不要漏掉不能合并的项;
  (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
  14.整式的拓展
  整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
  整式四则运算的主要题型有:
  (1)单项式的四则运算
  此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
  (2)单项式与多项式的运算
  此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。

附件

相关文章

上一篇 下一篇
赤峰教育网 版权所有 (c)2011-2017 蒙ICP备14000812号-1 蒙公网安备:15040402000121
主管单位:赤峰市教育局 主办单位:现代教育技术研究中心 承办单位:内蒙古智信信息技术有限公司

商务合作QQ:356529717  

凡本网站的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表,违者本网将依法追究责任